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Sample exact solutions sweeping the Fourier spectrum of the steady- 
state, two-dimensional, constant coefficients, homogeneous linear 
equation for the convective and diffusive transport of a conserved 
property in fluid media are used as test cases for a comparative study of 
four numerical discretization schemes: central differencing, upwind 
scheme, and the exponential schemes due to Allen and Southwell and 
Dennis and Hudson. The generality provided by this method allows a 
discussion on the concept of numerical diffusion in multi-dimensional 
problems, which identifies the upwind and other schemes’ errors with 
the angle between the flow and the grid. 0 1992 Academic Press, inc 

1. INTRODUCTION 

A number of questions common to the numerical solution 
of a broad set of convective and diffusive fluid transport 
equations can be considered with recourse to one of the 
simplest forms: the steady-state, two-dimensional, constant 
coefficients, homogeneous linear equation, 

where u and u are, respectively, x- and y-direction velocity 
components, 4 represents an intensive property such as 
temperature or concentration, and CI is the appropriate 
diffusivity. Equation (1) can also be seen as a linearized 
homogeneous form of momentum or vorticity equations for 
viscous flows, considering 4 as a velocity component or 
vorticity and cc as the kinematic viscosity. 

The discretization of both terms by the second-order cen- 
tral differencing leads to non-diagonally dominant matrices 
when one of the cell Peclet (or Reynolds) numbers is greater 
than 2 in absolute terms. If the system is solved iteratively 
the lack of diagonal dominance causes possible numerical 
instability, which can sometimes be avoided by using 
relaxation factors at the cost of slow convergence. For much 
higher cell Peclet numbers the matrix approaches a singular 

case, so that even direct solution methods are unstable or 
inaccurate. 

Diagonally dominant matrices are obtained with the 
central differencing for the diffusive terms and the upwind 
scheme for the convective ones [l], introducing a tirst- 
order error often referred to as numerical diffusion for its 
proportionality to the second derivative. This is small in 
some cases (particularly boundary layer regions without 
strong adverse pressure gradients when one of the numerical 
axes is parallel to the main flow direction), but tends to 
increase in other situations (especially recirculating 
regions). 

The performance of the upwind scheme in some standard 
test cases, such as the convective transport of a scalar with 
cross-flow step distribution, the solid-like rotating annular 
space, and the boundary layer transport of a scalar with 
Gaussian distribution, have led to the widespread view that, 
in the absence of strong transient or source terms, the 
upwind scheme’s numerical diffusion is essentially associated 
with the angle between grid and flow, being negligible for 
flows parallel to the grid and maximum for flows inclined 
at 45”-[2]. 

The limitations of classic central and upwind schemes in 
finite differencing, which are shared by most common finite 
element schemes, explain the need for investigating alter- 
native procedures, here limited to 2 five-node exponential 
schemes, both second order and diagonally dominant. 

The first was proposed by D. N. de G. Allen for solving 
the vorticity transport equation in a paper co-signed 
by R. S. Southwell [3]. The so-called Allen and Southwell 
scheme may be described on the basis of an exponential 
interpolating curve for each coordinate, say the x-direction, 
generated as a solution to the equation 

u2!$!Y=K 
dx dx= ’ 

which can be seen as a one-dimensional approximation to 
Eq. (1) if its y-derivatives are assumed locally constant. The 
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exponential solution is fitted to the three x-direction nodes 
(i- l,j), (i,j), and (i+ 1,j). 

The scheme was later extended to other equations [4]. 
Many reinventions and variations of the scheme appeared 
afterwards 15-71. Despite its quadratic rate of spatial 
convergence, the Allen and Southwell scheme was said to 
present accuracy problems similar to those of the upwind 
VI. 

The second exponential scheme is Dennis and Hudson’s 
live-point scheme embodied in Eq. (13) of their paper [9]. 
It is based on an approximated one-dimensional form 
coinciding with (2) for the present case, although in general 
coefficients are allowed to vary. Variable 4 is submitted to 
an exponential transformation, turning (2) into a Poisson- 
type equation. This is discretized by central differencing and 
then back transformed. 

These authors also present a more accurate, fourth-order 
scheme obtained with a deferred correction term, which is 
not considered here, being a nine-node scheme. 

Both exponential schemes will be compared to classic 
upwind and central differencings employing the exact 
solutions of Eq. (1) presented next. 

2. EXACT SOLUTIONS OF THE 
TRANSPORT EQUATION 

Coordinates x and y in Eq. (1) are rotationally trans- 
formed into s and n, respectively parallel and normal to the 
stream, as shown in Fig. 1. The new coordinates are non- 
dimensionalized by the square domain length, without 
notational changes. Finally, dividing by the diffusivity 
coefficient one obtains 

where Pe represents the global Peclet number, 

(3.1) 

(3.2) 

Assuming for (3.1) solutions in the form 

4th n) = S(s) .Nn), (4.1) 

one obtains, according to the method of separation of 
variables, the simultaneous ordinary equations 

(4.2) 

(4.3) 
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FIG. 1. Numerical and analytical coordinate systems and 
spacing numerical grid. 

10x10 

If A2 is preceded by a positive sign the solution take the 
forms 

#,=exp{[Pe-(Pe2+4J2)‘/*].s/2}.sin(Jn) (5.1) 

cjB = exp{ [Pe + (Pe’ + 4A2)lj2] s/2} .sin(Jn), (5.2) 

together with solutions in cos(An), that differ from above 
types A and B only for a change of origin. 

When 1* is preceded by a negative sign the real forms of 
solutions depend on the ratio L/Pe. If this is below 0.5 there 
will be solutions of types 

fj,=exp{[Pe-(Pe2-412)1’2]~/2}.exp(;ln) (5.3) 

&=exp{[Pe+(Pe2-4i12)‘/2]s/2}.exp(~n). (5.4) 

For 1/Pe > 0.5 solutions take the forms 

qL-- = exp Fs . sin[(1* - Pe2/4)“* s] .exp(in) 
( > 

(5.5) 

&,o=exp~~~).cos[(i.2-Pe2/4)1’2s].exp(ln). (5.6) 
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At ;1/Pe = 0.5 all forms collapse to obeying the general relations 

,,.:,=exp(~s)-exp(~n). (5.7) Ai I., = 7r( -A Pe,.) 1x.1 j 

Ai+ I.1 = ~(4 Pe,) (8.2) 

In both cases symmetric solutions in exp( --An) also A,,,- I =n( -A Pe,.) (8.3) 

appear. A ,.,+ I = W Pe,J (8.4) 
For low A/Pe ratios there are solutions on A, B, C, and D 

forms. A and C types are smoother in the flow direction A,,= -(A;~ ,.,+A,+,.j+A,.j- ,+Al.,+l). (8.5) 

than perpendicularly, representing situations of strong 
wross-wind diffusion, as for example in the hydrodynamic The specific form of function n(A Pe) depends on each 
and the thermal thin boundary layers [lo]. Note that discretization, as follows: 
strong cross-flow derivatives also characterize the test case Central differencing, 
functions upon which the angular concept of numerical 
diffusion is based. A Pe 

On the other hand, B and D functions with low EJPe x=1--. 
2 ’ (9.1) 

ratios present greater stream-direction diffusion, which is 
particularly strong in a boundary layer near the outlet of the 
domain. 

Upwind scheme, 

The elementary solutions of all types with high ;1/Pe 
ratios combine diffusion in both directions. 

if APeBO 
if A Pe < 0; (9.2) 

The discretization test cases employ all solution types. By 
varying Pe and 2 the performance of the schemes will be 
studied for a wide domain of the general solution’s Fourier 

Allen and Southwell scheme, 

spectrum. 
A Pe 

‘=exp(APe)-1’ (9.3) 

3. THE NUMERICAL PROBLEM 
Dennis and Hudson scheme, 

Square grids of variable refinement are adopted for the 
square domain, as exemplified in Fig. (1) with a 10 x 10 b-Pe 

n=exp -- 
spacing grid. ( > 2 . (9.4) 

The well-known rotational transformation is used to 
obtain the s-n cordinates at each point, so that exact func- Numerical solutions were obtained by an iterative 
tion values can be computed according to one of Eqs. (5). column-by-column procedure using the Tri-Diagonal 
Internal values are stored for comparison of numerical solu- Matrix Algorithm. The iterative process ended when varia- 
tions. The exact values at the boundary nodes are imposed tions of 4 between successive iterations were below 10e9 
as Dirichlet conditions for each scheme. times the difference between maximum and minimum 

The five-point schemes result in systems of difference values of the exact function. The iterative process required 
equations in the form a relaxation factor for central differencing; the value used 

was the minimum factor that could turn the difference 
Ai- l,j .~i~I,j+Ai+l,j.~i+1,,+A,,j-l.~i.,-l equation into a stepwise diagonally dominant form. 

+A,,!+1 ‘6i,,+l +A,j.4i,j=O (6) 
Computations were performed on Digital PDP-IO and 
PDP-11 computer systems with single precision of 34 bits. 

for each internal node (i, j). 
Coefficients A are functions of the cell Peclet numbers 

4. HIGH PECLET, LOW EIGENVALUE RESULTS 

As widely recognized, the accuracy of all schemes 
u.Ax 

A Pe,=- (7.1) becomes problematic for high Peclet number computations. 
c1 The value Pe = 100, whose exponential expressions are still 

within computer capabilities, was found sufficiently high to 
v.Ay 

A Pe,=- (7.2) induce many questions of interest. 
N u. The normalization factor of the error is defined by the 



difference between maximum and minimum values of the 
discrete exact function, excluding corner nodes. Due to the 
well known maximum principle the extreme values are 
necessarily located on the boundary for linear homogeneous 
cases. The corner nodes are not involved in the numerical 
problem for five-point schemes, and their exclusion from the 
normalization factor was found relevant for steep functions, 
leading to more representative error evaluations [ 111. 

shows a maximum error representing 0.6% of the nor- 
malization factor; the Allen and Southwell scheme error is 
2.5 %, and Dennis and Hudson’s is 38 %. 

Table I presents numerical solutions obtained by the 
second-order schemes, together with the exact solution, for 
the C type function considering I = 2.22 and p = 22.5”. The 
solution obtained with a 10 x 10 spacing grid is represented 
by the value along columns i = 2, i = 6, and i = 10 only. 

At point (i, j) = (10, 10) the central differencing scheme 

Table II considers the D function, maintaining Pe = 100, 
13 = 2.22, and /? = 22.5”. At the same point (10, lo), the Allen 
and Southwell scheme’s maximum error equals 0.6 % of the 
local value, or only 0.00007 % of the normalization factor of 
7.40 x 1026. The error of Dennis and Hudson’s scheme rises 
to 6.6% of the local value. Central differencing presents 
unacceptable oscillatory results, often known as wiggles, 
with maximum error of about half the normalization factor. 

TABLE I 
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TABLE 11 

Second-Order Schemes Solutions in Function D 
(Pe = 100, i = 2.22, /I = 22.5”) 10 x 10 Spacings 

Results for A and B functions, maintaining the quan- 
titative parameters, are very similar to C and D, respectively 
[ll]. Clearly central differencing is most effective in 

Second-Order Schemes Solutions in Function C 
(Pe = 100,1= 2.22, fi = 22.5”) 10 x 10 Spacing 

Node Solution 

i j Exact 
Central 

differencing 
Allen and 

Southewell 
Dennis and 

Hudson 

11 3.89 
10 3.16 3.16 3.18 3.38 

9 2.51 2.51 2.58 2.75 
8 2.09 2.09 2.10 2.24 
1 1.70 1.70 1.71 1.82 

2 6 1.38 1.38 1.39 1.48 
5 1.12 1.12 1.13 1.20 
4 0.912 0.911 0.917 0.976 
3 0.741 0.741 0.745 0.793 
2 0.602 0.602 0.605 0.643 
1 0.490 

11 2.82 
10 2.29 2.28 2.36 3.22 

9 1.86 1.86 1.92 2.62 
8 1.51 1.51 1.56 2.13 
I 1.23 1.23 1.27 1.73 

6 6 1.00 1.00 1.03 1.41 
5 0.813 0.811 0.837 1.14 
4 0.661 0.659 0.679 0.930 
3 0.537 0.536 0.550 0.752 
2 0.437 0.436 0.443 0.588 
1 0.355 

11 2.04 
10 1.66 1.64 1.75 3.06 

9 1.35 1.34 1.43 2.50 
8 1.10 1.09 1.16 2.03 
I 0.892 0.885 0.941 1.65 

10 6 0.725 0,720 0.764 1.34 
5 0.589 0.586 0.619 1.09 
4 0.479 0,416 0.500 0.884 
3 0.389 0.388 0.402 0.706 
2 0.317 0.316 0.322 0.521 
1 0.257 
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Node Solution 

Central Allen and Dennis and 
i j Exact differencing Southwell Hudson 

11 7.20E - 8 
10 1.28E - 9 - 6.57E + 23 l.l6E-9 3.69E - 10 

9 2.28E - 1.1 9.65E + 23 1.62E-11 1.35E - 12 
8 4.04E - 13 - 5.50E + 23 2.04E - 13 4.10E- 15 
I 7.19E- 15 1.99E + 23 2.35E - 15 1.15E - 17 

2 6 1.28E - 16 - 5.39E + 22 2.53E - 17 3.94E - 20 
5 2.27E - 18 l.llE+22 2.5lE - 19 3.02E - 22 
4 4.03E - 20 -2.13E + 21 2.50E - 21 4.4lE - 24 
3 7.17E - 22 3.33E + 20 2.35E - 23 8.65E - 26 
2 1.27E - 23 - 5.02E + 19 3.19E - 25 5.45E - 26 
1 2.26E - 25 

11 5.64E + 8 
10 l.OOE + 7 -2.OlE+25 1.02E + 7 7.52E + 6 

9 1.78E + 5 9.18E + 24 1.83E + 5 1.24E + 5 
8 3.17E+3 - 2.55E + 24 3.27E + 3 2.18E + 3 
I 5.63E + 1 4.81E+23 5.84E + 1 3.87E + 1 

6 6 l.OOEO - 1.78E f 22 1.04EO 6.68E - 1 
5 1.78E-2 1.29E + 22 1.85E-2 1.22E - 2 
4 3.16E-4 - 2.47E + 21 3.30E - 4 2.1lE-4 
3 5.61E-6 5.16E+20 5.86E - 6 3.86E - 6 
2 9.9lE - 8 -1.27E+20 1.04E - 7 6.87E - 8 
1 l.llE - 9 

11 4.42E + 24 
10 7.85E + 22 -3.81E+26 7.90E + 22 7.33E f 22 

9 1.40E + 21 2.85E + 25 1.41E+21 1.30E+21 
8 2.48E + 19 - 1.83E + 24 2.50E + 19 2.30E + 19 
I 4.41E + 17 7.26E f 22 4.45E + 17 4.09E + 17 

10 6 7.83E + 15 -9.98E+21 7.90E + 15 7.27E + 15 
5 1.39E + 14 6.10E + 21 1.4OE + 14 1.29E + 14 
4 2.47E + 12 -2.70E + 21 2.50E + 12 2.30E + 12 
3 4.4OE + 10 8.90E + 20 4.43E + 10 4.08E + 10 
2 7.81E+8 -3.17E+20 7.88E + 8 1.25E + 8 
1 1.39E + 7 

Note. E + n = 10 +“. - 
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cross-flow diffusion cases and Allen and Southwell’s is the 
best when convection and diffusion are parallel. 

The above results are now generalized for other angles 
and different refinement levels for Pe = 100 and A= 2.22 
using the compact representation provided by the 
logarithmic scale error versus grid size curve. Errors are 
given by the root mean square norm divided by the 
normalization factor referred. The upwind scheme is here 
included. 

Figure 2 shows the error for C type functions. In general 
the relative positions of the second order schemes are the 
same of Table I. The upwind scheme is close to Allen and 
Southwell’s in rough grids, but the second-order scheme 
shows its superior accuracy with refinement. The errors 
of the Allen and Southwell scheme and the Dennis and 
Hudson scheme coincide for 4.5”. Actually, not only the 
errors but the solutions are coincident for any function 
because of the proportionality between the two schemes’ 
difference equations when both coordinate direction cell 
Peclet numbers are equal. 

Confirming the angular concept of numerical diffusion, 
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both upwind and Allen and Southwell schemes follou 
closely central differencing at zero degrees but, for other 
angles their errors increase much more significantly. 

Figure 3 represents the error in D type functions keeping 
Pe and A unchanged. The general behaviour of the second- 
order schemes repeats that observed in Table II, except for 
the coincidence of Allen and Southwell and Dennis and 
Hudson schemes at 45’. 

The upwind scheme has no similarity with Allen and 
Southwell’s in this case. For refined grids it shows better 
accuracy at 45” than at O”, investing the trend assumed by 
the angular concept of numerical diffusion. In contrast, the 
Allen and Southwell scheme is again favoured at 0,‘. where 
it exhibits only noise level round-off errors. 

In both types C and D central differencing error versus 
grid size curves depart from straight lines in an oscillatory 
fashion for coarse, high cell Peclet number grids. which 
is attributed to an incomplete iterative process. Despite 
this fact, which can in principle be eliminated, central dif- 
ferencing curves are closer to straight lines than are those of 
any other scheme. Even the wiggly solution presented in 
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FIG. 2. Error versus grid size for five-node schemes in type C functions with different flow-to-grid inclinations. Pe = 100,1= 2.22. 
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Fig. 3. Error versus grid size for five-node schemes in type D functions with different flow-to-grid inclinations. Pe = 100,1= 2.22. 

Table II corresponds in Fig. 3 to a point on the straight 
line, whose error is therefore dominated by the second- 
order term of the series expansion. 

All other schemes, which are diagonally dominant and 
whose solutions and errors are bounded in the homo- 
geneous case, show concave error versus grid size curves, 
indicating that the error is generally smaller than the extra- 
polated asymptotic value. 

The behaviour of all schemes in A and B functions at the 
same Pe and ;1 is very close to their performance in C and 
D, respectively, except for functions B at 45”, where the 
errors of all schemes are reduced by three orders of 
magnitude compared with D, due to the anti-symmetry of 
the function about the s-axis [ 111. 

HIGH b/Pe RESULTS 

Figure 4 presents the performance of the second-order 
schemes in A and B functions for Pe = 10 and /.I = 22.5” with 
variable 1. For the smaller eigenvalue. (A = 2) the relative 
positions of the schemes are analogous to the previously 
considered C and D cases, respectively, although the curves 

581/101/Z-3 

show a less concave aspect at such smaller Pe. For A= 10 all 
discretization errors are greater and relatively closer to each 
other. 

The evolution of the schemes’ performance with fre- 
quency is more complex in C and D types. A significant test 
case provided by the situation where L/Pe = 0.5 (function 
C/D) is exemplified in Fig. 5, showing the error versus grid 
size curves for Pe = 2;1= 4.44 with different angles. 

The errors of the Dennis and Hudson scheme are always 
of round-off noise level and are not reproduced. Clearly this 
scheme has greater accuracy for increasing il in a region of 
C and D functions up to 1/Pe = 0.5. 

The central and the Allen and Southwell schemes have 
coincident asymptotic errors at 0” and 22.5”, but Allen and 
Southwell’s has nodally exact values at 45”, where it 
coincides with Dennis and Hudson%. 

Greater A/Pe values, yielding functions CD and DC, 
are considered in Fig. 6, representing the case Pe = 10, 
/? = 22.5”, and variable 1. Central differencing is favoured 
for 1= 6 in both cases, despite Dennis and Hudson’s 
optimality at L = 5 for this Pe. For A = 10 the errors of all 
schemes increase and tend to become close, analogous to A 
and B cases. 
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TYPE A TYPE B 
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Fig. 4. Error versus grid size for second order schemes in type A and type B functions with different 1. Pe = 10, p = 22.5”. 
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FIG. 5. Error versus grid size for five-node schemes in type C/D functions (Pe = 21= 4.44) with different flow-to-grid inclinations. 
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FIG. 6. Error versus grid size for second-order schemes in type CD and type DC functions with different 1. Pe = IO, a = 22.5” 

6. CONCLUSIONS 

Clearly the performance of all schemes depends on the 
particular solution of the transport equation. The Allen and 
Southwell scheme is favoured in cases with strong flow- 
direction diffusion, associated with B and D functions with 
low I/Pe. Central differencing, disregarding its instability 
problems, is favoured in cross-flow diffusion cases given by 
A and C functions with low A/Pe. Dennis and Hudson’s 
method is the best for the C/D case with I/Pe = 0.5. For 
I/Pe around or above unity, the errors of all schemes are 
high and close among themselves, whatever kind of function 
is considered. 

Although second-order schemes are necessarily more 
accurate than first-order ones for sufficiently refined grids, 
both the central and Dennis and Hudson schemes were 
worse than the upwind in some moderately relined cases. In 
this sense Allen and Southwell’s scheme is preferable as the 
scheme which proved to be almost always better than the 
upwind, even at rough or moderately refined grids, in a wide 
set of tests [ 111. 

It has been shown that the angular concept of numerical 
diffusion is restricted to subsets of the possible solutions of 
the transport equation, particularly to low I/Pe A and C 
types. When a numerical coordinate is parallel to the flow 
all errors associated with the solution of convection terms, 
in particular the upwind errors, are necessarily on the 

streamline direction coordinate. In the normal direction all 
schemes, the upwind included, coincide with the second- 
order central differencing. Since A and C functions with low 
11/Pe present low streamline derivatives, the convection 
errors are negligible. If the flow is inclined with respect to 
the grid there are convection terms and high derivatives in 
both numerical coordinates, so the error becomes con- 
siderable. However, the performance of the upwind scheme 
in other function types has shown that such a specific 
circumstance cannot be taken as basis for a general theory 
on numerical error analysis. 

Although based on experiments with live-node schemes, 
the above conclusion is relevant for schemes such as the 
skew- or fector-upwind [12, 131 and the skew-exponen- 
tial [14, 151, which are up to nine-point schemes. These 
schemes, inspired by the angular concept of numerical diffu- 
sion, avoid the flow-to-grid angle effect by using upwind or 
exponential interpolation in the stream-oriented coordinate 
only. 

The skewing procedure with upwind operates very well in 
the case of low d/Pe A and C function types, since it reduces 
the error to the level of upwind error at 0”. But the proce- 
dure fails to improve the accuracy in B and D function types 
where the upwind error at 0” is greater that at 45”, for 
instance. Also, the skew-exponential is not always more 
accurate than the exponential, at least with the exception 
found at C/D function with A/Pe = 0.5. 
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